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The Quest for Primordial B-Modes

Credit: ESA/Planck
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The Microwave Sky in Intensity

Planck 2015 X
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Why is Dust Emission Polarized?

Two ingredients required:

© Grains must be aspherical

® Grains must be aligned
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Grain Shape
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Grain Alignment
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Grain Alignment
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Grain Alignment

Grain spins about J B
J systematically aligns with B
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The Microwave Sky in Polarization

Planck 2015 X
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Key Questions

e Could the AME be polarized?
(and do we really know what it is?)

e What is the frequency-dependence of the dust
polarization? Is it the same as total intensity?



PAHs and the AME

e PAHs and the AME

e Hensley, Draine, and Meisner 2015. Submitted to ApJ
arXiv:1505.02157
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Anomalous Microwave Emission
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Spinning Dust Physics

e AME can be explained by
spinning dust grains
(Draine & Lazarian
1998ab)

e Very small grains (e.g.
PAHs) can get spun up by
gas collisions, radiative
torques, and other
processes

e If grains have a dipole
moment, this rotation
causes them to radiate

Credit: Yacine Ali-Haimoud
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e Attractive
AME carrier 3 —
Ingalls et al 2011 |
because they ]
are small and WISE 3 Bandpass |
ubiquitous L |

e Abundance
traced by IR
emission
features at 8
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Spinning Dust Emissivity

Galactic spinning dust emissivity
Jv. 30 GHz/NH =3 x 1078 Jy cm? sr =" H™!

Emissivity per PAH fairly robust to environmental conditions, so
assume a linear scaling with Xpay
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Spinning Dust Theory

Warning: Reality may not be so simple
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Full-Sky Test of the Spinning PAH Hypothesis

Full-sky maps of the AME derived from component separation
of the microwave sky by Planck let us test the AME-PAH
connection in detail.
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Model Predictions

© Linear correlation with 353
® Even tighter correlation with fpap73s3
©® No strong correlation with radiation field
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Model Predictions

v Linear correlation with 7353
2 Even tighter correlation with fpap73s3
3 No strong correlation with radiation field
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Model Predictions

v Linear correlation with 7353
X Even tighter correlation with fpap73s3
3 No strong correlation with radiation field
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Model Predictions

v Linear correlation with 7353
X Even tighter correlation with fpap73s3
X No strong correlation with radiation field
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A Further Test

e Does PAH abundance explain fluctuations in AME/R?
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Alternate Models

e What are our next-best theories?
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Magnetic Nanoparticles

¢ Emissivity per unit
volume of 0.01m
grains heated to 18K

e Emissivity in mm
and sub-mm much
stronger than
amorphous silicate
grains
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Some Problems...

e Not great at reproducing the shape of the SED

e Emission would likely be strongly polarized, in conflict with
observations
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Spinning Non-PAHs

e Still spinning dust, just not PAHs

e Not clear whether including a sufficient number of
ultrasmall grains of a different type (e.g. silicates) would
violate other constraints (e.g. UV extinction)
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No Spinning PAH Emission?

¢ Invoking alternate explanation still requires asking why the
PAHs aren’t producing significant spinning dust emission

o Electric dipole moments overestimated?
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Conclusions

e No apparent link between AME and PAHSs, other carriers
and other mechanisms should be (re)considered

e New data is needed to better separate AME from other
emission

e Major blind spot in our knowledge of Galactic microwave
emission— puzzle needs to be solved!
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e New Models of Interstellar Dust
(with Polarization!)

e Hensley & Draine 2016. In prep.
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Big Picture

e Grains producing polarized emission in the IR are the
same grains that produce polarized extinction in the
optical

e Use multi-wavelength data to construct a physical model
of dust compatible with the observations
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Method

@ Collect latest observations on dust in diffuse ISM—
extinction (total and polarized), emission (total and
polarized), and abundances

@® Identify candidate grain materials, grain shapes, and grain
sizes that can reproduce the observations

® Assess the observational consequences of different
models
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Composition Effects

Grains are of different composition appear to have different
polarization properties

e Silicate Features— Polarization detected

e Carbonaceous Features— Unpolarized
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Composition Effects

“We find that fitting a single modified blackbody
component for the thermal dust where the “real” sky
should account for two dust components may strongly
bias the estimation of the tensor-to-scalar ratio by more
than 50”

— Remazeilles et al 2015
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Observational Constraints

What observations does a successful dust model need to
reproduce?
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Emission Constraints
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Extinction Constraints
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Draine and Fraisse 2009
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Polarized Dust Emission

¢ Models with silicate and carbonaceous grains alone have
difficulty reproducing the observed decline in the
polarization fraction with increasing wavelength

¢ A new ingredient— magnetic nanoparticles



New Models of Interstellar Dust
00000e

Magnetic Nanoparticles

40 T T T T T T 11T

=

non—magnetic

sIxy 8uoq || &

Fe inclusions

Fractional Polarization (%)
o
‘HH‘HH‘HH‘HH‘\\H‘HH‘HHI\H\‘\H\‘HH‘HH‘HH‘HH HH‘HH

SIXy Suo || g

ol bbb bbb i |

ol Lol T R

1000 104
A[um]

—
Q
o
—
o

)



New Models of Interstellar Dust
0000000

Example

e 2:1 spheroidal silicate grains with 5% iron nanoparticles by
volume as inclusions

e Unaligned carbonaceous grains
e PAHs
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T
a
i)
—
w
)
w
o0
—
L
Zm
—~—
i
p<

10-24 L L L

10°% AN
\

102 ARG

1027 LA~ n/ [N \

1 0-28

\ i
| \ \ v \\
10—31 ST BRI BT ST B SR YRY £ % By,

10° 10! 10° 10° 10*
A [pm]

-
-
-

el ol ol ol ol




New Models of Interstellar Dust

[e]e] le]elelele)

Extinction
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Polarized Extinction
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Polarized Emission
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Summary

e Inclusion of iron grains allows us to match the
frequency-dependence of the polarized emission

e We alleviate the tension between emission and extinction
in the Draine and Li 2007 model by making silicates more
emissive at long wavelengths
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With a Model, We Can...

e Test the model against the Planck sky and learn what
drives variations in dust properties

e Predict dust properties at all wavelengths given a model fit

e Simulate different realizations of dust properties and the
implications for component separation
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Conclusions

e Fluctuations in AME/R are uncorrelated with fpay, casting
doubt on the association of AME and PAHs

e Uncovering the nature of the AME is important for
understanding microwave foregrounds— more observations
and analyses are needed!

e Our new models of interstellar dust successfully reproduce
the mean properties of dust in the diffuse ISM, including in
polarization

e The new models enable future work on the properties of
Galactic dust as well as next-generation component
separation
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